62-76=3x^2+8x^2-321

Simple and best practice solution for 62-76=3x^2+8x^2-321 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 62-76=3x^2+8x^2-321 equation:



62-76=3x^2+8x^2-321
We move all terms to the left:
62-76-(3x^2+8x^2-321)=0
We add all the numbers together, and all the variables
-(3x^2+8x^2-321)-14=0
We get rid of parentheses
-3x^2-8x^2+321-14=0
We add all the numbers together, and all the variables
-11x^2+307=0
a = -11; b = 0; c = +307;
Δ = b2-4ac
Δ = 02-4·(-11)·307
Δ = 13508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13508}=\sqrt{4*3377}=\sqrt{4}*\sqrt{3377}=2\sqrt{3377}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3377}}{2*-11}=\frac{0-2\sqrt{3377}}{-22} =-\frac{2\sqrt{3377}}{-22} =-\frac{\sqrt{3377}}{-11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3377}}{2*-11}=\frac{0+2\sqrt{3377}}{-22} =\frac{2\sqrt{3377}}{-22} =\frac{\sqrt{3377}}{-11} $

See similar equations:

| -6.05+(-3.611)=l | | 4+(-5)=l | | 7x+9=5x/2 | | 3−x/x−4=6/4−x | | 25x^-4-99x^-2-4=0 | | -(5x-1)+3x-3=-2 | | 5x/2+6=12x/3 | | 5+3=-x+9 | | 1.7x=0.9x | | 2x+12=3x-20-8 | | x—4=-9 | | 4t-2=4+4t | | 53=-x9 | | 0.02*x=50000 | | 2m+13=m-3 | | x/2-(3x-1/3)-1/3(2x+1/2)=x-2(x/4-1) | | 4x-8=2(x-7) | | 6m-16=16 | | -4x+32=16 | | 4+2(y-8)=13 | | a^2+24a-256=0 | | 3x+x+80=100 | | 41=28(-5-4w) | | -2×+8y=16 | | -(3y-4)-(2y-5)=-6 | | 4y²-8y+3=0 | | n^2=225 | | 10y-35=13 | | 5+5(y-7)=13 | | 48−3x=0 | | -2a+27=19 | | 5x9=19 |

Equations solver categories